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Abstract

An analysis of the current on an infinite cylindrical antenna which
is excited across a circumferential gap of non-zero thickness and immersed
in a lossy, compressible, magnetoplasma with its axis parallel to the static
magnetic field, is described. Some numerical results are presented for the
antenna admittance for the sheathless case, where the uniform magnetoplasma
is in contact with the antenna surface. The admittance values are obtained from
a numerical integration of the Fourier integral for the antenna current, and are
given for plasma parameter values typical of the E-region of the ionosphere.

The admittance results obtained exhibit a maximum slightly above
the electron cyclotron frequency (fh), and in this regard are similar to those
obtained when the magnetoplasma is incompressible but separated from the antenna
by a free-space layer (the vacuum sheath). The conductance is found to exceed
the susceptance except in the frequency range encompassed by the upper hybrid
frequency and fh’ which is also approximately the range of inductive susceptance,
the susceptance otherwise being capacitive., The admittance is also found to ex-
hibit a minimum or slight kink at the plasma frequency, a feature also found in
the imcompressible magnetoplasma results. It is concluded that of the plasma
compressibility, plasma anisotropy and the vacuum sheath, taken separately, the
latter two exert the strongest influence on the infinite antenna admittance.

A comparison of the theoretical results with experimental measure-
ments of antenna impedance in the ionosphere shows there to be a qualitative
similarity in the admittances. In particular, the experimental admittance is
found to have a minimum or kink at the plasma frequency, similar to that observed
in the theoretical results while an experimental admittance maximum is found
above the cyclotron frequency, indicating the influence of a sheath and/or the

plasma compressibility.



I. Introduction

With the opportunities now afforded by rocket and satellite ex-
perimentation in the ionosphere, there has developed today a great deal of
interest in the behavior of plasma-immersed antennas. This is in part due
to the necessity for predicting the influence of the ionospheric plasma on
telemetry antennas utilized in the rocket or satellite payload. Of as least
equal importance however, is the desire to use if possible, an antenna as a
diagnostic probe for determining some of the properties of the ambient ionos-
phere in which it is immersed. The present study has been undertaken with
the latter goal in mind in an attempt to gain a better understanding of the
relative importance of the various factors which may influence the admittance
of an antenna in the ionosphere. Among these factors are acoustical and sheath
effects which arise from the non-zero plasma temperature, and the plasma
anisotropy resulting from the ionospheric magnetic field.

The antenna geometry chosen for the investigation is that of an
infinite, cylindrical dipole driven at a circumferential gap of non-zero thickness,
a geometry which allows a rigorous boundary value problem approach to be used.
The antenna is oriented with its axis parallel to the static magnetic field in the
plasma. The case of the compressiblef isotropic plasma was reported on pre-
viously by the author (Miller, 1967a, referred to hereafter as I), and in a sub-
sequent report (Miller, 1967b, referred to hereafter as II) the incompressible,
anisotropic plasma was considered. In both 1 and II the actual sheath which
forms about a body at floating potential in a warm plasma was approximated by
a concentric, free-space layer between the antenna and the external uniform

plasma, a sheath model commonly referred to in the literature as a vacuum

sheath.

" A "compressible plasma'' is used in this report to denote a plasma in which
the electron pressure wave, or electrokinetic wave, can propagate.
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In the present report, the treatments given in I and Il are extended
to the more general case of the compressible, anisotropic plasma medium.
This means that the antenna can excite three mode types in the plasma, two of
which are basically electromagnetic (EM) in nature, and one a basically electron
pressure or electrokinetic (EK) wave., Since these waves are coupled as a re-
sult of the plasma anisotropy, none of them is purely electromagnetic or electro-
kinetic. By comparison, two EM modes are encountered in the development of
II, while in I there is one EM and the EK mode to be considered. A vacuum
sheath model will be considered here in formulating the boundary value problem,
but due to the extreme complexity of the numerical calculations, numerical re-
sults are given here for the sheathless case only.

A comparison of the admittance results obtained here with those

previously given in I and II will be made, in an attempt to demonstrate the re-

lative influence of the various factors considered on the infinite antenna admittance.

The relevance of the calculated results to some experimental measurements of
antenna impedance in the ionosphere will be discussed. It will be shown that
the experimental and theoretical results are in qualitative agreement on some
significant features of the admittance variation with excitation frequency. As in

I and II, the RMKS system of units will be used unless otherwise specified.




II. Formulation,
The field behavior in the plasma is described by the time-dependent

hydrodynamic equations for the electrons (ion motion is neglected) together

with Maxwell's equations, as

Vx E(r,t) = - g a“at‘ H(r,t) (1)
VxH(r,t) =€ 2 E(t -aN(t) V() (2)
(2 + v V) Yoo = -L By - Vi,

- IEV&}%%) -2 L Vo xHEY (3)
(g—t PV VINEO+NE )V - Vit = 0 (4)
N (r,0) T (r,) ") = constant (5)
P(r,t) = kN(r,t) T (r,t) (6)

where Eand Hare the total electric and magnetic fields, V, N and P are the
macroscopic electron velocity, number density and pressure, -q and m are
the electron charge and mass,V is the electron collision frequency, tﬁo and
M, are the permittivity and permeability of free space, and r and t are the
space and time coordinates. The quantity v is the ratio of specific heats for
the electron gas.

The procedure followed here is the same as that used previously in
I and II, in that Egs. (1) - (6) are linearized by introducing time varying or
dynamic perturbation quantities which are small in comparison with the non-
time varying or static quantities., Again, since the resulting boundary value
problem depends on the sheath model used in the analysis, the vacuum sheath
and inhomogeneous sheath models will be treated separately below. The vacuum

sheath model is one where the actual sheath is replaced by a free-space layer



which separates the antenna from the external uniform plasma, The inhomo-
geneous sheath model is one where the actual sheath inhomogeneity is taken
into account, and the plasma extends to the cylinder surface. In either case,
the sheath is assumed to be of finite thickness and of radius p = s, forming

a concentric layer between the antenna surface of radius p = c, whose axis
is coincident with the z-axis of a cylindrical (p,¢ , z) coordinate system, and
the external uniform plasma. The antenna is assumed to be excited by a
circumferential slot of non-zero thickness centered at z = 0, across which

a voltage eiwt which is independent of the azimuthal coordinate ¢ is applied,
Contrary to the isotropic plasma case investigated in I, an azimuthal, as well

as an axial antenna current are excited, as a result of the static, axially-

directed magnetic field. While the problem is here formulated for the sheathed

antenna for the sake of generality, because of the extreme complexity of the
numerical calculations, admittance results will be presented for the sheath-

less case only.




II. 1. The Vacuum Sheath.

In analyzing the vacuum sheath model, Egs. (1) - (6) are required

to describe the fields in the uniform magnetoplasma region external to the

sheath, while only (5) and (6) are required for the sheath region itself with

N(r,t) = 0 there., We consider first of all the plasma fields, and linearize

(1) - (6) by introducing

Uz i< Im e
= F EEF
o e o2 2
0 I I I n

—

=

<
It

so that (1) - (6) bec
Vx e (r,t)

Vxn (r, 1)

_9_
5 n(r, t)

e(r,t)

H2 + h (r, t)

vir,t)

N + n(r, t) ; ln[<<'Ni
P+ p(r, t) ; {pi<<\P]1
T+ T, v ; | TIK<| 7]

ome

= -uO%; b (r,t)

= €, % el -aNy(nt

- - e(n - Uvlnt - S5
—% vir,t) x (u Hz)

+N Ve, t) = 0

\ n(r, t)

Note that the static and dynamic pressures are given by

P = kTN

p

so that when v is set to zero, the dynamic pressure is also zero and the

v kTn

(7a)
(7b)
(7¢)
(74)
(7€)

(71)

(8)
(9)

(10)

(11)

plasma is incompressible since the electrokinetic (EK) wave does not pro-

pagate, If instead, the plasma is of zero temperature, then the total pressure



is zero, The plasma may thus be of non-zero temperature and may or may
not be compressible, but is always incompressible when the temperature is
zero. In the results to follow, we assign a value of 3 to v, so that vkT = mvf,
with v, the rms electron velocity. If we Fourier analyze the variables with
respect to time appearing in (8) - (11) by using the transform pair

(0 0)
r

e(r,t) = 21; / gl¥t ’é_J(L w) dw

-0
(0 0]
Br, w) = et e(r, 1) at
-Q0
then we obtain
\&(r,») =-iwu_h(r, w) (12)
Vxh(r,w) = iw € &(r,w) - qNV(r, ) (13)
v 2
iwU¥(r, @) = - L Er,0) - F{/Hr, o) (14)
- %1 u HV(r, w) x2
iw’r\{(ﬁ, w) + N "':;(y_, w) = 0 (15)

where U = 1-iV/w = 1-iZ

After a further Fourier transform with respace to z, given by

a

-~

A, @) = o / P %ep, g, w) dB

s

-
@
’E(p,B ,w) = /e—iBZ’c:(gw) dz
-




we can solve for the electron velocity from (13) - (15) to obtain

PO <A

<

p

2
qQ _Bvr

T imwU €, NUo - (16a)
[ 2 )
1 iw “€ {~ Y qv_'Y
5 P21 + — T+ r2 = (16Db)
aN(Y2/UY) | e | ® iU P wu
1 o 2€ )Y Y\ e )
s P og - T |+ T (16¢)
qN(1=Y*/U%) |wU \ P iu © wU

where the explicit dependence of the transformed quantities onf and w is

hereafter understood, and the prime denotes differentiation with respect to

p. Note that the fact has been used that the field quantities are independent

of the azimuthal coordinate ¢, since the source is independent of 9 . Also

The

<h

velocity expressions may be inserted into (13) to get

o~ ST~
_= \

= e (€T -k (13a)



where
F !
| €1 —€ 0
~l
E: = + E]_ 0
L0 0 €
ky 0 0
k = K 0 0
0 0 k
and
XU
S R R
U4-y~
~ . XY
R )
U®-vY
. X
L= - —
P e
9
qv_ U
kK, = —lp
1 F iUty
2
k] Qv Y
= 1
€ 2(U2-vd)
. qu2
3 fing
O

—

(173)

(17b)

(17¢)

(17d)

(17e)

(17f)

(17g)

(17h)

Upon taking the curl of (12) and the curl and divergence of (13)

together with the use of (15), we may obtain, after some simplification,

the following coupled wave equations




2 2

2% 20 2% XY= | quY,, BVr .=
V8, + (Kg %6 5-0 T, vig e, 2X08 + Y 1Bt )R o (18)
U U w U
2.2
. K v
2= 2 ~ 2= igq _ _Eo 'r = _
Vp esz(KEo €3 B )ez+ = (1 2 )n =0 (19)
-0 w"U
2. 2 .o 2 2 . A
~ B v i w XY™ il =
VA + A€ =T - =% S +—2" % -0 (20)
p -0l w U quU k1
2_ 1 3 /(.2 2 _ 2 ~
where Vp > ap (pap ), Kg, WULT

It is of interest to see that Hz appears in only two of the three wave equations.
As a check, the system of equations (18) - (20) should reduce to the incom-
pressible plasma equations given in II when v,.—> 0. Thus when the electron

temperature becomes zero, (18) - (20) become

vDhZ+<KEo €3_B)hz+1BKow U2 ez+qun 0 (21)
VA 2 2 q = _
v e, T Ky, “€4 -7, +ig son=0 (22)
"0
Ll B§Y2 e +im € h_ =0 (23)
€o U(U®-v°)

It may be seen that n is not zero unless Y = 0, a result also shown by

(13) and (15) which yield
GOV' S+dn = 0
and since from (13a) we get
V(e 2 =0

we then find

|od
&
o



Equations (21) - (23) may be simplified to

r 2 [~ ¢
oL 5 2~ 9! == ~ oty =
Vo byt (Ko 0% 2g) BT B -BeCf e, = o (24)
1 1
I 2 = A —~
V2z 2 P o= £=
o € + ‘KEO {.‘1 3%z * Bwuo {'1 hz 0 (25)

with the details shown in Appendix A. The expressions (24) and (25) are

identical to the wave equations obtained in II for the anisotropic, incom-

ressible plasma.

Returning now to the compressible plasma equations (18) - (20),

we introduce

[

=
€z ’ 1
h, | = T 5 = T G (26)
,E i 3 |
so that
(VZ+coH T+ G=o0 (27)
where )
i 2 2 , o e 2.2, 20
Kp, €3 B ; 0 ;1B q(l-Kpg v, "/« U)fE
C:= |ig€ XYo/U LK 20 BZ . quy(1-B 3V 202Uy /U |(28)
= o ’ Eo 3 ’ r !
. 2.2, 2.2 . ' 2 2, 2 .
‘136000 XY /qu U 5 1°3UO€/ kl 5 q(€1_B Vl" Jw U)/tokl
Multiplying (27) from the left by T ! we obtain
72, -1 )
(V*+IZ7-cr) 6= o (29)

A solution for the coupled plasma fields may be obtained if the matrix
_1.

defined by

10

T + C- T can be diagonalized, If the columns of T are the eigen vectors of C,



C- o - ,\J.T(J) (30a)
1 1
where EJ is the j th column of T and )Lj is the corresponding eigen value,

then

T G .[T<1)+ 2, T<3)} ) PHT(”* (2, X (3)
= = - - - = 2= 3=
Multiplying from the left by T ' we get

-1 .C-T - L [/\11(1)9\21(2)1‘)\31(3)}

But
-1, |k
T T =10
= 0
and similarly for T~ 2 T(® ana 771 1(3) g6 that
Ther - A (30b)
where
- i
Ay 0 0
é = {0 /\2 ko
o0 Ay

Solutions for the individual G's are thus

2A = . 1 =
(Vp+ PG =0 5§ =123 (31)

and may be written, for the cylindrical geometry, as

(2) -~
G, = AH F) . 32
= AHST R (32)
where Ho(z)is the Hankel function of the second kind and order zero, and the

Aj's are the wave amplitudes to be determined by the boundary conditions. In
order to ensure the proper behavior or the solutions at infinity, the roots of

)kj having a negative imaginary part must be used.

11



The eigen values of C are solutions, with I the identity matrix, to

HR

which is explicitly given by

A3+ 32A2+ ay /L+ ao = 0

where
3y = - (Cyyt Cypt Cyo)
8y = CyyCopt CypCagt C33C
"C13C31 ~ Ca3Cag
3g = Cy3C99C31% C11C93C39™ C32C13C
"C11C22C33

Finally, the eigen vectors _T_J_ are obtained from (30a). Since there are nine
homogeneous equations in the nine elements of T represented by (30a) it is
clear that a non-trival solution is possible only if some of the elements of
I are arbitrary. Since in addition, the nine equations break up into three

sets of three unknowns, each set (j = 1, 2, 3) involving the three elements of

each eigen vector _'EJ, it is clear that three of the elements of T are arbitrary.

For convenience, we set the TJ1 elements equal to 1, so that

2 = | A7C11)Ca3% Cyg* CzJ /[C13()\3'C22)l

J

el
!

. -
Ty = ()\j C;p) / Cyq

where j =1, 2, 3

—_—
_=

The quantities e_, hz and n now serve as potentials from which the

other field components may be found, as
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D;:J. B C+zt ] Azi ) 41
e, = n -ig Ae  -iou Bh, (33a)
D”l“ = 1 2z !
€y = C n+iB Be, —1<.oquhZ (33b)
tad =
th = DS eq‘3 /wuo ' (34a)
1
== _ . 4t 2 = 1 &~
Dh —L iB C'n H(D-B “A) e -wu Bh, /1<.ouo (34b)
where -
_ 2 2 €
A = B KEo 1
_ 2 !
B = KEo e
D = A2+ B2
+ 2 '
C = - KEo (Ak1+ Bk )
c” K. 2 (Ak
- - EO ( k - Bkl)

Now that the field quantities in the compressible magnetoplasma

o~ [t

f oot

have been obtained in terms of the potentials ’gz, hz, and n, or equivalently
in terms of the Gj, the boundary value problem for the vacuum sheath model
can be specified. Seven scalar boundary condition equations are required

for this purpose since there are three amplitude coefficients to be determined
for the plasma fields, and four for the vacuum sheath where there are both
inward and outward propagating transverse electric (TE) (eZ = 0) and trans-
verse magnetic (TM) (hZ = 0) fields. The sheath fields may be generated in

terms of potential functions also, where

e =V x(D2 (35a)
GRS L VxVx (a’[;ma) (35b)
Eo
and T = L \7}(%
1%



The subscripts e and m refer respectively to the TE and TM fields, and
upon using the superscripts I and R to denote the fields propagating in the

+p and -p directions in the sheath, the potentials are of the form

~

LR _ LR .. (1,2)
e’ m = Ae, m HO (A\Eop) (36)
. 2 _ 2 _ 2
with AEo = KEo B

We use the usual boundary conditions of continuity of the tangential
electric and magnetic fields at the vacuum sheath-uniform plasma interface
(p=s) and vanishing of%)m on the surface of the perfectly conducting antenna
(p=c), which is a total of five scalar boundary condition equations. The final
two equations involve the field at the exciting circumferential gap on the
antenna surface, and the normal electron velocity at the sheath-plasma
interface, A voltage eiw't excites the antenna, being applied across a circum-
ferential gap of thickness 5 centered at z = 0. The axial electric field vanishes
everywhere on the antenna surface except at the gap where it is assumed equal
to the gap field, which for & small compared with the excited wave-lengths, is

iyt
given by -e'® '/§ . Thus

e e, @) = - Blo-wn) 2r %"%ﬁfgﬂ?—) (37)

+ 270 (w-') S (B)

The boundary condition on the electron velocity at the sheath-plasma interface,

is written as, for the sake of generality,

-~
e

v, = YBn (38)

where YB is the surface admittance (Cohen, 1962), and may be non-zero for

an absorptive - type boundary (Balmain, 1966),

14




The seven scalar boundary condition equations are then written

2
A
Eo I R B
Koo Amilogt A ) - S (g) 21 O (w-w') (39)
I R ;! _
ACH o+ AJH , =0 (40)
X2
“+*Eo I R o~
K (Am Hs2+ Am Hsl) h ez(s,B » @) (41)
Eo
I R .. sz
_/XEO (AeHs2+ Ag Hgp) = €p (8.8, @) (42)
.1 2
i\ ~
Ec I R _ =
77—K“ (AeHs2+ Ae Hsl) - hz(S’B » @) (43)
o Eo
Apo Al m AR H ) - T (s 8,0 (44)
— m " s2 m " sl e
No
.2 iXe w Py ]
—— O F (58,0 -XTF(s,8,0) (45)
(U“°-Y*) U p iU
iqu2 d - ~
+ — n(p,B ,w = YBn(S,B , W)
wU dp p=s
where i
_ (n) )
HXn - HO (/“EOX) )

the prime denotes differentiation with respect to argument, and

7’ZO - uO/ €O )
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The system of equations (39) - (45) is quite complicated, particularly
when the dependence of the various plasma fields upon the Gj solutions is
considered. Some simplification can be effected by using (39) and (40) to
eliminate two of the coefficients, thus leaving five equations in five unknowns
to be solved. The extreme complexity of solving this system of equations
indicat ed the utility, for now at least, of attacking the sheathless case
instead. This has the advantage of providing a check solution for a possible
subsequent numerical treatment of the vacuum sheath problem, while at the

same time being sufficiently less involved as to be numerically feasible to

treat.

16




II. 2, The Sheathless Case,

When there is no sheath (or equivalently for the vacuum sheath case,

when s = c), then the nine boundry condition equations (39) to (45) simplify to

,’g (c,B ,w) = S(B) 2Tr(5(co—w‘) (46)
"é" (c,B,®) = 0 (47)
o~ @€, G S B @) +ghplc, B w); ¥ on(e, B, ) (48)

.;

In the calculations to follow, we take Y= 0 (i.e., the rigidity boundary

B
condition) so that in the following development the right hand side of (48) is

~ = =~
set equal to zero. The substitution of the potentials e, h_andn into (47)

and (48) leads to, with the prime denoting differentiation with respect to p,

= !

-=', . = ' . B

CT1 18‘.,Bez -1co/.zOAhZ = 0 (49)
=t 2 2N L =

-C'n + lB‘; A-D/(B -KEO Je + 1wuoBhZ = 0 (50)

where the potentials are understood to functions of p,f and w evaluated at
~l = ! .
p=c. It is convenient to eliminaten and hZ from one of the two equations

in which they appear, so that (49) and (50) become

F b, +Fye, = 0 (51)

FA +FE - 0 (52)
where

F, - iwp;o(Bc'-AcJ’)

F, = iBELBC++ o {;A-D/(BZ—KEO%] 1

4= ou_p {B2+ Al A-DI(B®-Ky D) 1

which together with (46), (26) and (32) serve to obtain the Aj wave amplitudes,

17



Upon introducing the following notation

'

1
_ (2) (.
Hy = Ty H, 0 i)
(2),.
Hy = TyH, 00 0

the boundary condition equations may be written

1
+ F,H

) ] 1 1 !
(F Hyy + FpH) ) At (F Hyg + FoH o) Agt (F Hyp + FoH g ) Ag =0 (53)
1 1 1 1 1 1
(F Hgy + FgHyy ) At (F Hgy + FoH o ) Agt (F Hag + FgH ) Ag =0 (54)
Hy Ay +HpA, + H A, = S(8) 21 Se-w) (55)

There does not appear to be any advantage in analytically inverting
the Eqns. (53) to (55) because of the complexity of the coefficients; the
inversion was consequently done numerically. The ¢ -~-component of magnetic

field, required to obtain the axial antenna current, is then obtained as

=~ B 1 "‘
h‘p (c,g,w) = ~-==- | CLA + CyA,+ CyAq, (56)
1quD J
where
B D 2 1 1 . + 1
Cj = (D-g~A) H1j - BquBH2j - iBC ng
while the z-component is given by
B ) = H. A, +H. A +H. A (57)
2GR w) = Ho A+ HygfAgt HyoAg

The antenna surface current in the z-direction is obtained from
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- 2? f ei(w't + Z)ﬁ(p (CJB , 0.)‘) dB dw!

-0
= 2c:eimt /@cos(ﬁ z) Ew (c,B,w) dB

=0

= 1 (z,0) lwt (58)

Similarly, we obtain the surface current in the azimuthal direction as

I(p (z,t) = 21TCK¢ (c, z,t)

= —2Trchz (c, z,t)

@ ) ~
- g [ P8 0 ap o
-Q0
(0 0]

= —2ceiwt j cos(B z) HZ(C,B ,w) dB

-0

-1 (z,0) et

0 (59)

where for purposes of comparison with I , we have multiplied the ¢-directed

surface current per unit length by 2mc. Also

o

(C,B ,w') 21 & (w-w") HZ(C’B ,w)

hfe,B, ) = 21 8 (w-w') hfc,B o)
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The antenna admittance Y, is for unit excitation voltage given by
I(8/2,0) = Y () = G (o) +iB () (60)

and is obtained by a numerical integration of (58). A discussion of the
numerical integration technique used is given in I. The accuracy of the
admittance results to be presented should be better than one percent, unless
otherwise indicated. Limitations on the accuracy are due principally to
replacing the integration in (58) by a summation and truncating the inte-

gration at a finite value of 8. The error associated with the former may

be adjusted by specifying the convergence accuracy of the numerical inte-
gration, while the Jatter error is adjusted by specifying the allowable trun-
cation error as discussed in I. An earlier termination of the integration
then desired may sometimes result from computer overflow in which case
the specified smallness of truncation error may not be achieved.

The evaluation of the admittance values for the present case of the
compressible magnetoplasma was considerably more time consuming than
required to obtain the results given in I and II primarily because finding the
eigen values of the wave equations requires obtaining the complex zeros of a
complex cubic equation. A typical admiftance value for I and II required
about one minute of 7090 time for its calculation, whereas in the present
case, this time may be on the order of 3 or 4 minutes. The convergence

test was used in evaluating the antenna admittance, or IZ (& /2,w), so that

as mentioned in II, the values obtained for Iq> (6/2,w) may not be as accurate

as those given for IZ(CS /2, ).
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II. 3. The Inhomogeneous Sheath

For purposes of completeness, the equations requiring solution for
the inhomogeneous sheath model are included here, though no numerical
computations are included in this report for the inhomogeneous sheath.
When the inhomogeneous sheath is considered, then the linearized variables

introduced in (7) are modified by

E(r,t) = E(r) + e(r,t); ]el<< ‘E (73)'
Nt - N@) -+l ales( (1)’
P(r,t) = P(r) + plr, t); K_p\<< \P (7e)

so that in place of (10) we obtain

3 uet) = Le(r,t) -V ylr,t) + 2LV p

3t —-= m— -’ mN2(E)
_:___. V P(r, t) -__u v(r, t) xHZ (10)'
mN(r) m
while (11) is now
3 n(r, )+ N(p) Vowlr, 0 +u(z, 0 - VNE@ = 0 (11)"

at

1
We note that (10) can be also written as

aat vz, t) = -Lelmt) - Vlr, 1) ———n(r )V N(p) ! lll\‘;(T—) Vntr, t)

-9
0 Mo Y(rt) x Hz

which more clearly demonstrates the result of a non-zero temperature or

non-zero v on the electron equation of motion.
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t 1
It may be shown that using (10) and (11) in (9) leads to (13a) in

the same way as before, but where now

k1 0 k2

! .

é = k 0 k2

] 0 0 k3 |
and where
k, = JEKUKT T gyl SXE@U
ag(u®-v?) BN(r)(U2-v?)
k, = -i bk,

Thus the effect of the inhomogeneity is to introduce two additional terms in

the k matrix.

We find from (3) that

q ~ VP) _  kTVN() _ _ kT

m B0 2 SN T T mND o T w3 N (61a)
since N is a function of p only so that with

E(p) = -V Plp) (61b)
we find

N(p) = Nooexp(qq)(p)/kT) (61c)

with NOo the electron density in the uniform plasma. We will assume

that Cb (r) varies as

. M
2 - S—
‘/{)(P) = ¢c {s—%{ ;i Cp< S (61d)
, =P
where M is an adjustable parameter and
1 m
Dy = - & log \ ] (61f)
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with m, the ion mass (see Self; 1963). It should be noted that these equations
for the static sheath electric field and electron density are approximations at
best for even the magnetic-field-free case. However, they seem to be a
reasonable first order attempt to include the sheath inhomogeneity in the
analysis.

It may be seen in (61) that N(p) is independent of T, at least explicitly
and could apparently be an arbitrary function of p, but since in reality the

sheath thickness is proportional to the electron Debye length 1?{ , Where

Vr/(\/%'wp) =VkT/m [o,

2
<
;\/ka/N q

2

then s—=c as T—=0 so that the electron density variation would be confined
to a decreasingly thinner region with decreasing temperature. Thus in con-
sidering either the vacuum sheath or inhomogeneous sheath models, a realistic
sheath thickness presupposes consideration of a realistic electron temperature
regardless of whether or not the compressible plasma model is being con-
sidered.,

Since the first order differential equations are more convenient to
deal with in a numerical analysis, we present here the first order differential

equations which apply in the sheath. They are
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! ~ =
€ = i 62
<, i Bep+ iwu he, (62a)
=~! 1= =
= -—e - 62b
€o pe(p 1wuohz ( )
! 1 o= w2
T = -=e -ip e+ (62c)
p 0 P e €,v,2 Q
Q! L= ~r 1",:
hy = iw 606 3¢, "iB Q - B—hq) (624d)
263
=! Y a2 - ~ Y &= i €
—_ - — - 4 —
hz weo U ep 10 "O€Be(p tB U hcp + Wi ¢ (62¢)
2 2
s U -Y )Cz Y o~ _ =
—~1 € Q)( — P E
5 - -8 T X 02 & —5 Q (62f)
iU mv .
2 2 =
+1g (55) by,
U
where
= 2%, IR
Q = -qv, n/iw = - q¥kTn/iw m

These equations (62) reduce to those given in II for the inhomogeneous
incompressible plasma by setting ¥ and E equal to zero. It is necessary

to set E equal to zero in the dynamic equations given here to recover those
in II since the equations in II were obtained by dropping at the outset the
pressure term in the dynamic electron equation of motion, with the result
that no term in E’a arises in II, as does appear here in (62f). This occurs
since in Il the plasma is considered of zero temperature in the dynamic
equations, but of non-zero temperature in the static equations in order to
provide an inhomogeneous electron density distribution in the sheath. If the

plasma is incompressible (i.e., ¥ = 0) but of non-zero temperature, then

(62f) reduces to a linear relationship among%p, %‘:D ) T{tp andaand (61)

represents a fifth-order differential equation. When in addition, E is set
to zero in (62f) the results of II are then obtained, Finally, when Y is zero,

the Equations (62) reduce to those for the inhomogeneous sheath of I.

2L




The boundary value problems for the inhomogeneous sheath may be
formulated in a fashion similar to that of I and II. The tangential electric
and magnetic fields, the normal electron velocity and the electron number
density are required to be continuous at the sheath-uniform plasma interface,
yielding six scalar boundary conditions, where the fields in the uniform plasma
are solutions to (21) to (23). The boundary conditions at the antenna surface
are the same as those used for the sheathless case above, given by (46) to (48),
in which the field quantities are now solutions to (62) to obtain a total of nine
scalar equations. The Fourier coefficients for the transmitted fields in the
uniform plasma may be eliminated from the boundary condition equations at
the sheath uniform plasma interface as before, to obtain six scalar equations

which determine the six constants of integration of (62a) to (62f),
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III. Numerical Results

Because of the complexity of the boundary value problem for the
infinite antenna in a compressible magnetoplasma, the previous discussion has
been restricted, at least so far as any detail is concerned, to the sheathless
case. Consequently, the numerical results to be presented here are also
limited to the sheathless case. The plasma and antenna parameter values
used in obtaining the results to follow have been chosed to conform to the corre-
sponding values employed for the previous calculations presented inI and II .

For the purpose of comparison and to demonstrate the change from
the free-space antenna admittance brought about by the immersion of the antenna
in the plasma, Fig. 1 shows the free-space antenna conductance GO and sus-
ceptance BO as a function of frequency over the range 250 KHz to 10 MHz, with
the exciting gap thickness 5a parameter, ranging from 10_1 to 10_30m and an
antenna radius c of 1 cm. It may be seen in Fig. 1 that the free space conductance
is independent of the exciting gap thickness and the susceptance is only slightly
dependent upon the gap thickness, a feature discussed previously in more detail
in I. In addition, over the frequency range used, the conductance exceeds the
susceptance by a factor of about 5. In the subsequent graphs, the antenna radius
will be 1 cm and the gap thickness 0.1 cm.

We now present in Fig. 2 the admittance when the antenna is
immersed in the compressible, magnetoplasma medium with fp = 1.5 MHz,

1

f, = 1.0 MHz, V= 10%sec’] T=1,500°K, = 107'cm and c=1 cm. The vacuum

sheath thickness, in units of the electron Debye length Dr, is denoted by X on

these and subsequent graphs; because this is the sheathless case, X=0. Above

the upper hybrid frequency f = VfF2)+f}21, the conductance and susceptance are seen

in Fig. 2 to be in approximately their free space ratios and increasing toward

their free space values as the frequency is increased. There is a conductance
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Figure 1.

The free-space infinite cylindrical antenna admittance as a function
of frequency with the exciting gap thickness, § , a parameter and a

radius, ¢, of 1 cm.,
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Figure 2. The infinite antenna admittance as a function of frequency for the

compressible, magnetoplasma and the sheathless case with a radius
of 1 cm, an electron plasma frequency of 1.5 MHz and electron
cyclotron frequency of 1.0 MHz.
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minimum and susceptance zero at f = ft’ the susceptance changing from
capacitive above ft to inductive immediately below it. As the frequency is
decreased below f,, a susceptance minimum or "kink'" occurs at fp, while
the conductance has a rather sharp minimum just below fp. A rather broad

susceptance maximum occurs between fp and f,_, where a somewhat sharper

.

conductance maximum also is seen. Further decreasing the frequency below

fh results in a slowly decreasing conductance, and another susceptance zero,

below which the susceptance is again capacitive. The low frequency part of

the susceptance curve is marked with superimposed crosses since the sus-

ceptance values obtained here are estimated to be accurate to no better than

10 per cent; this coding will be used on subsequent graphs for the same purpose.
In Fig. 3 the infinite antenna admittance results are presented for

the same set of parameter values as used for Fig. 2 with the exception that the

values of fp and f, have been interchanged, fp now being 1.0 MHz and fh 1.5 MHz.

h
The admittance above the hybrid frequency is similar to that for the previous
case, there again being a conductance minimum and susceptance zero at ft' As
the frequency is decreased below ft’ the susceptance and conductance both ex-

hibit maxima between ft and f_, with the conductance maximum occurring closer

h)
to ft than the wider susceptance maximum. The susceptance again passes

through zero close to f., below which it is capacitive. Another conductance

h’
minimum or kink is observed at fp and a susceptance minimum is seen below
fp in a fashion similar to the results of Fig. 2 near fpexcept that the roles of the
conductance and susceptance are interchanged in the two graphs. The conductance
for f sufficiently less than fp is nearly independent of frequency.

The significance of the admittance curves shown in Figs. 2 and 3

can perhaps be more fully appreciated when compared with some of the admit-

tance results of I and II. Therefore, for ease in comparing these results, we
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Figure 3. The infinite antenna admittance as a function of frequency for the

compressible, magnetoplasma and the sheathless case with a radius
of 1 cm, an electron plasma frequency of 1.0 MHz and electron
cyclotron frequency of 1.5 MHz.
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present in Figs. 4 and 5 the results corresponding to Figs. 2 and 3 respec-
tively for the sheathless case, but for the incompressible plasma. The most
obvious difference between the compressible magnetoplasma and incompres-
sible magnetoplasma admittances is the fact that in the latter case, there is

a very pronounced admittance maximum at f_, while in the former case the

h’
admittance maximum is reduced in amplitude and shifted upward in frequency
from fh' In other aspects, the incompressible and compressible magnetoplasma
admittance curves resemble each other, having other admittance maxima and
minima of very similar nature.

It is very interesting to observe that when compared with the incom-
pressible, sheathless magnetoplasma admittance results shown in Figs. 4 and
5, the additional effect on the admittance of the magnetoplasma compressibility
shown in Figs. 2 and 3 is very similar to that resulting when the incompressible
magnetoplasma is separated from the antenna by a vacuum sheath, the results
for which are shown in Figs. 6 and 7. The sheath thickness used here is 5 Djd
calculated for an electron temperature of 1, 500°K. A comparison of the admit-
tance curves for the three cases considered shows that the vacuum sheath also
shifts upward in frequency and reduces in amplitude the admittance maximum

which occurs at f, for the incompressible sheathless case, as was discussed

h
above in presenting results for the compressible magnetoplasma model. Outside
of this main difference, the admittance results for the three models are quite
similar., It is thus apparent that at least from the viewpoint of the infinite
antenna admittance, the magnetoplasma compressibility and vacuum sheath are
factors, which taken separately, produce changes from the antenna admittance
for the sheathless, incompressible case of very similar character.

This equivalence of the plasma compressibility and the vacuum

sheath may be further illustrated by presenting comparable results for the

isotropic (magnetic-field-free) plasma, as shown in Fig. 8 and 9. The results
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Figure 4. The infinite antenna admittance as a function of frequency for the

incompressible magnetoplasma and the sheathless case, with an
electron plasma frequency of 1.5 MHz and electron cyclotron fre-
quency of 1.0 MHz,
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Figure 5. The infinite antenna admittance as a function of frequency for the

incompressible magnetoplasma and the sheathless case, with an
electron plasma frequency of 1.0 MHz and electron cyclotron fre-
quency of 1.5 MHz,
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Figure 6. The infinite antenna admittance as a function of frequency in the in-

compressible magnetoplasma with a vacuum sheath thickness of 5 DL,

an electron plasma frequency of 1.5 MHz and electron cyclotron
frequency of 1.0 MHz.
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quency of 1.5 MHz.
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of Fig. 8 are for the sheathless case and those of Fig. 9 are for the 5 DP
vacuum sheath (the elect ron temperature used for calculating the sheath
thickness is again 1, SOOOK) with fp equal to 1.5 MHz, The incompressible
plasma curves are denoted by T=0°K. It may be seen in Figs. 8 and 9 that

as for the magnetoplasma case, the plasma compressibility and vacuum

sheath, taken separately, change the admittance from the sheathless, in-
compressible case in very similar fashion. In particular, an admittance
maximum occurs below the plasma frequency (at roughly half the plasma
frequency for the cases shown) whenever there is a sheath or the plasma is
compressible. Thus we wee that in the isotropic plasma, as for the anisotropic
case discussed above, a similar influence is exercised by the plasma com-
pressibility and vacuum sheath on the infinite antenna admittance. Conse-
guently, while admittance results are not given here for the compressible,
sheathed, magnetoplasma case, it appears, based on the results thus far shown,
that this model would not be expected to be very significantly different from

the sheathless case already considered. Part of the explanation of the antenna
admittance on the plasma anisotropy, plasma compressibility and the vacuum
sheath comes from the nature of the current waves excited on the infinite antenna
for these various plasma models. This topic is of sufficient interest and depth
to justify a separate discussion, to be given in a subsequent report.

Although not as significant a physical quantity as the axial antenna
current, the circumferential current has some significance, since it is deter-
mined by the TE mode axial magnetic field, which is of course zero when the
plasma is isotropic. It may thus be viewed as an indicator of the magnetoplasma
anisotropy as seen by the antenna, when compared with the axial current, which
comes from the TM mode circumferential magnetic field; the magnitudes, of the
two currents serve to indicate the degree of excitation of the two electromagnetic

modes.
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Figure 8. The infinite antenna admittance as a function of frequency in an iso-
tropic plasma for both the compressible (T=1, 500°K) and incompres -
sible (T=0°K) cases and zero sheath thickness with an electron plasma
frequency of 1.5 MHz.
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Figure 9. The infinite antenna admittance as a function of frequency in an iso-
tropic plasma for both the compressible (T=1, 500°K) and incompres-
sible (T=09K) cases and a vacuum sheath thickness of 5 D g with an
electron plasma frequency of 1.5 MHz.
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Thus we present in Figs. 10 and 11 the circumferential antenna
current, at z= £5/2, for the same plasma parameters used for Figs. 2 and 3
respectively. The quantity plotted is I=R + i I, the current density K(p multi-
plied by 2wc, so that a direct numerical comparison with the axial current is
meaningful. It is interesting to see that the circumferential current magnitude
is generally 1 to 2 orders of magnitude less than the corresponding axial current.
As might be expected, the circumferential current is largest near fh’ appearing
to reach its maximum value at the same frequency as does the axial current.
It is also interesting to see that the circumferential current exhibits minima

or "kinks' at f=fp in a fashion similar to that shown by the axial current.
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Figure 11. The circumferential current as a function of frequency for the com-
pressible magiietoplasma and the sheathless case with an electron
plasma frequency of 1.0 MHz and electron cyclotron frequency of
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IV. Comparison with Experimental Results

While this study has been devoted to an investigation of the plasma-
immersed, infinite cylindrical antenna because of a number of theoretical
considerations, the ultimate goal of coming to a better understanding of an
actual antenna immersed in the ionospheric plasma has not been forgotten.

The rationale which has been followed is that the medium influence which is
apparent in the change of the infinte antenna admittance from its free space
behavior, would provide a general indication of the corresponding behavior of
the finite antenna in the same plasma medium. In line with this, it was antici-
pated that some swept-frequency experimental impedance results would be
available from a rocket-borne antenna which would provide some extremely
useful data for comparison with the theoretical findings presented here, as well
as with some simpler theories of finite antenna impedance in the literature.

It may be mentioned that there is a scarcity of systematic ionospheric impedance
measurements now available for comparison with theory. With the exception of
a series of rocket flights by Heikkila et, al, (1966), most published impedance
data is for a series of fixed frequencies, which means that an impedance vs.
frequency plot for a constant set of plasma parameters is not available. The
above -mentioned experiment was designed in part to fill this gap.

The first rocket which carried this experiment was successfully
launched to an altitude of 290 Km, and about 75 swept-frequency impedance
records, from 800 KHz to 8 MHz, together with other related data, have been
obtained from it. This data is presently being reduced and analyzed, and in-
cludes in addition to the impedance measurement, a transmission experiment,
a relaxation resonance experiment, a conventional LLangmuir probe and
simultaneous ionosonde record, which should be extremely useful in assess-
ing varoius diagnostic techniques for electron density measurements, as well

as interpreting the impedance results. These results will be reported on in

the near future.
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Some comments can be made however, about the numerical results
obtained here compared with some of the experimental data presented in the
literature. We refer in particular to the experimental impedance results of
Heikkila et. al. (1966) mentioned above, for a spherical antenna, as well as
the data published in a series of articles by Stone, Weber and Alexander
(1966a, 1966b, 1966¢c) for a cylindrical antenna. There are some features
exhibited by the experimental impedances which appear to correlate with the
theoretical admittances presented above.

For example, one of the prominent features of the theoretical admittance
curves for the magnetoplasma case is a rather sharp minimum or "kink' which
occurs in either the susceptance or conductance, whichever is the larger, or
possibly both together, at the plasma frequency. The results of Heikkila et.
al. show a consistent susceptance discontinuity at the plasma frequency (though
none is seen in the conductance), with values for fp obtained from this indicator
agreeing well with other independent measurements. A similar behavior is

exhibited by Stone et. al's. impedance results when fp<f there being an

B
abrupt change in the reactance and pronounced resistance peaking at f=fp. When
fp> fh on the other hand, only the resistance shows a noticeable increase at

f=fp. It should be remarked that the results of Stone et. al. are for fixed fre-
quencies and shown as a func tion of antenna altitude (or equivalently, as a
function of the plasma frequency) so that an exact comparison with the
theoretical results presented above, where the frequency is varied, is not
possible. There is however, a qualitative similarity between the quoted
experimental results and the infinite antenna theoretical results presented

here as well as numerical impedance values obtained from the theory of

Balmain (1966) for a finite antenna, which is discussed more fully in II.
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A second characteristic which the theoretical admittance results exhibit,

an admittance maximum shifted upward from f, by either the vacuum sheath

h
or plasma compressibility, is also observed consistently in the measurements
of Heikkila et.al. This behavior of the measured admittance has ledBalmain
et. al. (1967) to conclude, from the application of a quasistatic theory for the
antenna impedance, that a positive ion (or vacuum) sheath is responsible for
the observed upward shift of the admittance maximum from fh. As has been
mentioned above, the findings from the infinite antenna analysis show that
this shift may be due to either a sheath or the plasma compressibility. It
seems likely that for an actual antenna in the ionosphere, the shift may be
due to a combination of both effects acting together; it is impossible to now
say which would exert the greater influence on the finite antenna. However,
the infinite antenna results indicate that the sheath may be more effective in
this role than the plasma compressibility.

Finally, the infinite antenna findings show that an admittance minimum
is to be expected at the upper hybrid frequency ft’ and more specifically, the
susceptance changes sign there. This behavior, it should be noted, has not
been found to be shifted in frequency by the vacuum sheath or plasma compressi-
bility. The results of Stone et. al. do posses a susceptance zero and con-

ductance minimum in the vicinity of ft' On the other hand, the measurements

made by Heikkila et. al. do not consistently exhibit a susceptance zero at
ft’ but they do however, consistently show a minimum in the admittance
magnitude at f, (according to Balmain, et. al. (1967)).

Thus, while the amount of experimental data available in the literature
for comparison with our theoretical findings is limited, we see that what
there is appears to agree in some fairly significant details with the theoretical
results. It is hoped that when the data from the rocket shot mentioned pre -
viously is reduced that a more detailed comparison between experiment and

theory will be possible.
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V Conclusion

This report has presented a theoretical development and numerical
calculations for the admittance of an infinite cylindrical antenna excited at
a circumferential gap of non-zero thickness and immersed in a lossy,
compressible magnetoplasma, with the static magnetic field parallel to the
antenna axis. Numerical values for the antenna admittance have been
obtained by a numerical integration of the Fourier integral for the antenna
current evaluated at the exciting gap, and are presented for plasma parameter
values typical of the E-region of the ionosphere. A vacuum sheath model and
inhomogeneous sheath model have been considered in the analysis, but due
to the complexity and thus time-consuming nature of the calculations, the
numerical results are given for the sheathless case only. In addition to
giving results for the antenna admittance, which requires evaluation of the
axial antenna current, some results have also been presented for the circum-
ferential current. Finally, the most significant aspects of the calculated
admittance are compared with some experimental measurementis made with
antennas operated in the ionosphere.

The infinite antenna admittance results presented here for the sheathless,
compressible magnetoplasma case show that, compared with the incompressible
magnetoplasma results, the plasma compressibility in the former case and the
vacuum sheath in the latter case influence the antenna admittance in very
similar ways. In particular, an admittance maximum which occurs at the
electron cyclotron frequency when there is no sheath and the magnetoplasma
is incompressible, is shifted upward in frequency and reduced in magnitude by
both the vacuum sheath and plasma compressibility. This effect is more pro-

nounced when fp> fh then for the converse situation. Other than this significant
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change, the sheathless magnetoplasma admittances for both the compressible
and incompressible cases are very similar.

The antenna susceptance is found to be, broadly speaking, inductive
when fh< f<1"t and capacitive otherwise. Besides the admittance maximum
near fh , a second maximum occurs just above fp when f > fh’ with a rather

sharp minimum in both the conductance and susceptance at fp' When f < fh’

there is a susceptance maximum only just above fp, with a conductance mini-
mum just below this.

Above the upper hybrid frequency, the antenna admittance is not greatly
affected by the plasma compressibility, anisotropy or vacuum sheath, while
only when all of these factors are absent is there no admittance maximum below
ft' Of these three factors, the magnetic field, sheath and plasma compressibility,
the first two appear to exert the greatest influence on the infinite antenna ad-
mittance when immersed in a plasma.

A comparison of the theoretical admittance values for the infinite
antenna which have been given here with some experimental measurements
performed in the ionosphere, reveals that the theoretical and experimental
results are qualitatively alike in some significant details. The location of an
admittance maximum above the electron cyclotron frequency, an admittance
minimum or kink at the electron plasma frequency, and an admittance mini-
mum at the upper hybrid frequency are all features that appear in both the
experimental and theoretical results. The theoretical study which has been
carried out thus appears to incorporate in it at least some of the more important
physical processes which act on an actual antenna in an ionospheric-type plasma
and may thus provide more insight into the interpretation of the rather exten-

sive experimental program of impedance measurements which has been started.
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At the same time, the relative success of the theory thus far used in accounting
for the pertinent aspects of the expected experimental measurements should
give more positive indication of what are the major physical processes in-
volved, and what modifications could be incorporated in the theory, e.g.,
considering an inhomogeneous sheath, to bring the theory and experiment into
closer agreement. Finally, it would be hoped that the major physical processes
thus established may be used in developing a theory for the plasma-immersed
finite antenna, possibly by a direct formulation of the problem in an appropriate
finite geometry, or by extending the infinite antenna analysis through the use

of multiply reflected currents ona finite antenna, as done by Chen and Keller

(1962) for free space.
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Appendix A

The reduction of the non-zero temperature magnetoplasma equations
to those for the zero temperature magnetoplasma when the limit T=0 is used in
the former equations is shown here, The warm plasma equations are given in
the text by (18) to (20) and when the limit ™0 is used, these equations reduce
to (21) to (23). Our problem is to reduce (21) to (23) to the form derived directly
from the zero temperature equations, as was done in II, the equations for which
are given by (24) and (25).

Upon substituting (23) into (21) and (22) we obtain

Voh +(K £ 32)h+ Be, }%{E
U Z

wl€o [ipxy? _ -
+ 55 €, " iwuogﬁz =0 (A1)
U¢, LUU%-Y%) |

. . 2
2 2 2, = | iB iBXY® = . e
Vo9 + (K2 €,.-B%) e + i e -iau €H_[= 0 (A2)
z Eo "3 z €4 U(U2—Y2) z o~ 'z

These reduce to

2
' Y
9 2 2w 2 € = Y )
Vp thr <KE063 B )hz KEo Y FlU thr 13“{0 XU €(U2 Y2 =0 (A3)
T2, 2 2% a20 € € =
Vp%e + (Kg €4-B9) e -18°Y oF Bou, r h, = 0 (A4)

The éxz term in the HZ equation can be written as

2 Y€
iBr wX X | 1+ — Y - B0 oX —
o y? £, (u2-v?) RS
1 |
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and thus
2. .2 2 ve ¢ =
\/p + KEO€3 ‘B (1+1 -U—é\—; ) ] eZ + BO.)[JO \:'1 hZ = 0 ) (A5)
; —|V
- Y€ -
L2 2 - . Yr 2.5 . 3 =
VEHKE (€, Ty B T riBuEx 3T - o (A6)

It was shown in II that a direct derivation of the zero temperature

magnetoplasma equations from

~Z

%

\/¥€ = -iwu h
Yh = il .5
produces
‘“72+K2 ¢ -BZE} ;S + Buwu E' h = 0 (A7)
Vo " ®Eot3 1 %z o S
!
i , 2 N
22 2 . 2| = ~ 3a
!L\/p+KE (€,+ gl ) - B hZ-BwGO& 7 e, = 0 (A8)
|

Some of the terms in these equations are identical and thus check. The others

must be shown to be the same. Now

1 1
Y& 1| - YE '
1+ = = — | Gt
D S A
_1 |, ox o, xy?
€1 (u?v%) uwty?)
_ Ly XL _£3
€ Ul
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so the differential equation for € checks. In addition,

. /_' _ wXY
ol = ==,
(U%-Y7)
e}
Y€ o
. 3 " S3
iBwf X ———5 = - B& w€ —
o] el(UZ_Y2) (o) <

and the gz part of the /Ez equation also checks. Finally,

and since

then

¢ v (g, €

3‘1

%, Tl
so that the 7lr\iz wave equation also checks for both derivations.

Another limiting process of interest is the case of the uniaxial
plasma, where Y—= . In this case then (18) to (20) simplify in the following
—

way. Since Y multiplies the E:Z and Hz terms in the’?fz equation, then in order

that Ez remain finite, the terms multiplied by Y must cancel. This means

that

2.2
. A%
ox _ 19U _ B r =
e_ = (1 ) n (A9)
z £ “ X sz
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which may also be deduced from the equation for n. We then obtain, since

n and "gz are linearly related, only two wave equations, which are

2 = 2 ~ _ R2yx
Vo bt (Kpofs Bh, = 0 (A10)
2 2
KEoVr ‘,
g2 | L2y |
2= 2 2 w =
Vpe (Kpof 3~ 8 + —F 55 e, = 0 (Al11)
1__Xr_)
sz

Because of the limit Y—=oo, it may be verified from (14) that
;\70 and ;7/(0 become zero, as also does ’gqs . Consequently, the only boundary
condition remaining to be satisfied is that on gz, and the number of modes
radiated by the antenna reduces from three for the compressible, magneto-
plasma to one for the compressible, uniaxial plasma which is the TM mode,
the wave equation for which is given by (A11). The radial propagation constant
for this mode is a rather complicated function of 38, . 63, w and KEo'

If the zero-temperature limit is now taken in the uniaxial equation,

then the only wave equation affected is (A1l1) which becomes
2= 2 2y ~ =
Ve, + (kg -BY) €55, = 0 (A12)

This equation is the same on that obtained from (25), which applies for the
incompressible magnetoplasma, when the limit Y—=o0 is taken in (25). However,
the equation for ﬁz obtained when Y—=oo and then Vo 0 and given by (A10) differs

from that when first vr———>0 and then Y—= o since (24) becomes, for Y— o0,
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ViE, +d, -BHE, - o (A10)

This differs from (A10) in the fact that€3 multiplies K%)o in (A10) but not
in (A12).

The explanation for this apparent discrepancy lies in the fact that
when Y = oo, regardless of the value of Vi ;ﬁz is zero. This may be shown
by noting from(14)that for an infinite static magnetic field, /\7’p and V.,
as well as E(p are zero. Then the z-component of (12) is zero on the left
hand side, showing that ,ﬁz is also zero. The TE (with respect to the static

magnetic field direction) mode cannot be excited then in an uniaxial plasma.
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